

Pedro Gabino Mendoza Pacheco

Análise Numérica do Fluxo e da Estabilidade de uma Pilha de Lixiviação de Minério de Cobre

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Geotecnia

Orientador: Celso Romanel Co-orientador: Denys Parra Murrugarra (UNI-Peru)

Rio de Janeiro, Agosto de 2005

Pedro Gabino Mendoza Pacheco

Análise Numérica do Fluxo e da Estabilidade de uma Pilha de Lixiviação de Minério de Cobre

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Celso Romanel** Orientador, PUC – Rio

Deane de Mesquita Roehl PUC - Rio

Anna Paula Lougon Duarte PUC - Rio

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, Agosto de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Pedro Gabino Mendoza Pacheco

Graduou-se em Engenharia Civil pela Universidade Nacional de Engenharia (UNI-Peru) em 1996. Desenvolveu durante a tese de graduação o programa computacional denominado *GeoDam* para estudo do comportamento de barragens. Atuou na seção geotécnica do Centro de Investigações Sísmicas e Mitigação de Desastres (CISMID-UNI) em Lima, Peru. Ingressou em 2003.2 no curso de mestrado em Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro, na área de Geotecnia, desenvolvendo dissertação de mestrado na linha de pesquisa Geomecânica Computacional para análise numérica do fluxo e da estabilidade de uma pilha de lixiviação de minério de cobre.

Ficha Catalográfica

Mendoza, Pedro Pacheco.

Análise numérica do fluxo e da estabilidade de uma pilha de lixiviação de minério de cobre / Pedro Mendoza Pacheco; orientador: Celso Romanel; co-orientador: Denys Parra Murrugarra – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2005.

v., 129 f.: il. ; 29,7 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia civil – Tese. 2. Pilha de lixiviação. 3. Fluxo não-saturado. 4. Estabilidade sísmica de taludes. 5. Elementos finitos. I. Romanel, Celso. II. Murrugarra, Denys Parra. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV Título.

Para meus pais, Matilde e Augusto, pelo apoio de sempre; para mia esposa Ingrid e meu filho Pedro Manuel por seu grande amor e compreensão; aos meus irmãos pelo grande amor com que sempre me brindam.

Agradecimentos

A Deus, por todas as graças recebidas.

À Pontifícia Universidade Católica (PUC-Rio) e ao CNPq por terem me concedido a oportunidade de realizar este trabalho.

Ao professor Celso Romanel, por sua orientação, confiança e apoio, meus sinceros agradecimentos.

A meu co-orientador Denys Parra, pela sincera amizade.

A meus pais Matilde e Augusto, pelo apoio de sempre.

Aos meus irmãos Luz, Javier, Eufemia, Gilmer, Orlando, Wilfredo, Consuelo, Yolanda e Luis pelo grande amor com que sempre me brindam.

A mia esposa Ingrid e meu filho Pedro Manuel por seu grande amor e compreensão.

A meus amigos e companheiros de estudo do curso de Mestrado em Engenharia Civil da PUC-Rio.

Aos funcionários da Secretaria do Departamento de Engenharia Civil, especialmente à Ana Roxo, pela dedicação e paciência com os alunos de pósgraduação, principalmente com os estrangeiros.

Resumo

Mendoza, Pedro Pacheco; Romanel, Celso; Murrugarra, Denys Parra. **Análise numérica do fluxo e da estabilidade de uma pilha de lixiviação de minério de cobre.** Rio de Janeiro, 2005. 129p. Dissertação de Mestrado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação apresenta uma análise numérica do fluxo não saturado em uma pilha de lixiviação de minério de cobre. Adicionalmente, foi feito também um estudo da estabilidade estática e sísmica da pilha de lixiviação, por sua construção estar planejada em região de alta sismicidade no sul do Peru. A pilha será construída com minério de cobre não tratado sobre base impermeável para evitar a contaminação do meio ambiente por fluxo da solução ácida através da fundação. Os resultados obtidos nas análises numéricas indicam que a pilha de lixiviação apresenta fatores de segurança satisfatórios considerando sismos de magnitude até 7,5 com aceleração máxima de até 0,30g. Da mesma forma, constatou-se que a posição da linha freática formada pela solução de lixiviação não atinge as camadas previstas para proteção das tubulações de drenagem.

PUC-Rio - Certificação Digital Nº 0310980/CA

Palavras – chave

Pilha de lixiviação, fluxo não-saturado, estabilidade sísmica de taludes, elementos finitos.

Abstract

Mendoza, Pedro Mendoza; Romanel, Celso (advisor); Murrugarra, Denys Parra (co-advisor). **Numerical analysis of the flow and stability of a copper ore heap leach**. Rio de Janeiro, 2005. 129p., M.Sc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

This dissertation presents a numerical analysis for the non saturated flow throughout a copper ore heap leach. Additionally, static and dynamic stability analyses were also made because the heap leach is planned to be built in a highly seismic region in the south of Peru. The heap will be constructed with non-treated copper ore (run of mine) on impermeable pad specially devised to avoid any possibility of ground contamination by the flow through the foundation of the acid solution used for the lixiviation process. The numerical results obtained in the stability analyses indicate that the heap leach presents satisfactory safety factors even when considering earthquakes of magnitude 7.5 with maximum acceleration of 0.30g. It has been also observed that the phreatic line formed by the lixiviation fluid does not reach the layers devised to protect the drainage pipes of the lixiviation system.

Keywords

Heap leach, unsaturated fluid flow, slope seismic stability; finite elements.

Sumário

1 Introdução	21
2 Pilhas de lixiviação	24
2.1. Introdução	24
2.2. Componentes de uma pilha de lixiviação	24
2.2.1. Fonte de minério	24
2.2.2. Preparação do minério	25
2.2.3. Pilha e base <i>(pad)</i>	26
2.2.4. Aplicação da solução / sistema de coleta	28
2.2.5. Piscinas de solução fértil e estéril	29
2.3. Aspectos Geotécnicos	29
2.3.1. Base da pilha <i>(pad)</i>	30
2.3.2. Piscinas de solução fértil e estéril (ponds)	32
2.3.3. Sistema de coleta	32
2.3.4. Pilha	34
2.4. Estabilidade de taludes	34
2.5. Resistência ao cisalhamento	37
3 Relações constitutivas para fluxo em meios não saturados	40
3.1. Introdução	40
3.2. Determinação direta da função de condutividade hidráulica	41
3.3. Determinação indireta da função de condutividade hidráulica	42
3.3.1. Método de Fredlund, Xing e Huang (1994)	43
3.3.2. Método de Green e Corey (1971)	45
3.3.3. Método de van Genuchten (1980)	46
3.4. Determinação indireta da função de teor de umidade volumétrico	47
3.4.1. Método de Arya e Paris (1981)	48
3.4.2. Método Modificado de Kovacs (2001)	49
3.4.3. Método de Fredlund e Xing (1994)	52

3.4.4. Método de van Genuchten (1980)	53
4 Estabilidade de taludes	54
4.1. Métodos de equilíbrio limite	54
4.1.1. Método das fatias	55
4.1.2. Solos não saturados	59
4.2. Método dos elementos finitos	60
4.2.1. Método direto: simulação do colapso	62
4.2.2. Método indireto: equilíbrio limite aperfeiçoado	63
4.3. Análise sísmica	66
4.3.1. Análise pseudo-estática	66
4.3.2. Método de Newmark (1965)	66
5 Análise do comportamento de pilha de lixiviação	69
5.1. Modelagem da pilha de lixiviação	69
5.2. Propriedades dos materiais	71
5.2.1. Resultados de ensaios no minério de cobre	71
5.2.2. Resultados de ensaios no material das camadas de proteção	74
5.3. Avaliação aproximada do espaçamento entre drenos	77
5.4. Análise numérica do fluxo não saturado 2D	79
5.5. Análises de estabilidade	88
5.5.1. Análise pelo método dos elementos finitos	90
5.5.2. Análise pelo método de equilíbrio limite aperfeiçoado	96
5.5.3. Análise pelo método de equilíbrio limite	97
5.5.4. Comparação dos resultados	98
5.5.5. Análise pseudo-estática	98
5.6. Análise sísmica	99
5.6.1. Terremoto de Lima (1974)	106
5.6.2. Terremoto de Moquegua (2001)	110
5.7. Estabilidade estática pós sismo	112
5.7.1. Análise pelo método dos elementos finitos	112
5.7.2. Análise pelo método de equilíbrio limite	118
6 Conclusões e sugestões	120

6.1. Conclusões	120
6.2. Sugestões	122
7 Referências bibliográficas	123

Lista de figuras

Figura 2.1 – Esquema do processo de uma pilha de lixiviação (Dorey, Zyl e Kiel,
1988). 25
Figura 2.2 – Pilha com base re-utilizável (Dorey, Zyl e Kiel, 1988). 27
Figura 2.3 – Pilha com base expansível (Dorey, Zyl e Kiel, 1988).27
Figura 2.4 – Pilha de lixiviação em vale (Dorey, Zyl e Kiel, 1988). 28
Figura 2.5 - Características gerais das instalações de uma pilha de lixiviação
(Strachan e Dorey, 1988) 30
Figura 2.6 - Aspectos gerais do local de construção da pilha ((Strachan e Dorey,
1988) 31
Figura 2.7 – Aspectos gerais do sistema de coleta (Strachan e Dorey, 1988) 33
Figura 2.8 - Potenciais superfícies de ruptura na pilha (Harper; Leach, Tape -
1987) 35
Figura 2.9 – Ângulo de atrito versus tensão vertical (psi) - (Leps, 1970). 38
Figura 2.10 - influência da técnica de construção na estabilidade da pilha: a)
empilhamento para jusante; b) empilhamento para montante (Smith e Giroud,
2000). 39
Figura 3.1 – Função de condutividade hidráulica (Fredlund e Rahardio, 1993). 41
Figura 3.2 – Função do teor de umidade volumétrico (Fredlund e Rahardio, 1993).
42
Figura 3.3 – Funções do teor de umidade volumétrico para areia fina, silte e argila
(Ho, 1979) 43
Figura 3.4 - Curva de adsorção e dessorção para um solo de silte (Fredlund, Xing
e Huang, 1994) 45
Figura 4.1 – Forças atuantes em uma fatia vertical de uma superfície de
deslizamento (GEO - SLOPE/W) 56
Figura 4.2: Tensões atuantes na superfície potencial de ruptura65
Figura 4.3: Distribuição de tensões cisalhantes (τ e s) ao longo da superfície
potencial de ruptura ($A \rightarrow B$) 65
Figura 4.4 - Analogia de Newmark (1965) entre uma massa de solo

potencialmente instável e o bloco rígido sobre um plano inclinado. 67
Figura 4.5 - Integrações no tempo para determinação da velocidade e
deslocamento relativos pelo método de Newmark (Smith, 1995). 68
Figura 5.1- Esquema da modelagem da pilha de lixiviação de minério de cobre. 70
Figura 5.2 Curvas características de sucção do minério de cobre da pilha de
lixiviação. 72
Figura 5.3 Função de condutividade hidráulica para a camada de minério 1 72
Figura 5.4 Função de condutividade hidráulica para a camada de minério 2 73
Figura 5.5 Função de condutividade hidráulica para a camada de minério 3 73
Figura 5.6 Função de condutividade hidráulica para a camada de minério 4 73
Figura 5.7 Função de condutividade hidráulica para a camada de minério 5 74
Figura 5.8 Função de condutividade hidráulica para a camada de minério 6 74
Figura 5.9 Curvas características de sucção para a camada de proteção 2 75
Figura 5.10 Curvas características de sucção para a camada de proteção 1 76
Figura 5.11 Função de condutividade hidráulica para a camada de proteção 2 76
Figura 5.12 Função de condutividade hidráulica para a camada de proteção 1 77
Figura 5.13 Superfície freática devido à infiltração pela superfície78
Figura 5.14- Ilustração de parte da malha de elementos finitos correspondente às
duas camadas de proteção e camadas de minério 1 e 6. 80
Figura 5.15 Ilustração dos vetores de velocidades de fluxo e posição da zona de
saturação. 81
Figura 5.16 Distribuição do teores de umidade volumétricos ao longo da altura
da pilha. 82
Figura 5.17- Perfil de saturação nas camadas de proteção com a variação da vazão
de aplicação da solução ácida. 82
Figura 5.18 Linha freática e velocidades de fluxo para vazão $q = 8 l/h/m^2$ 83
Figura 5.19 Linha freática e velocidades de fluxo para vazão $q = 60 l/h/m^2$ 83
Figura 5.20 - Perfil de saturação nas camadas de proteção com a variação do
coeficiente de permeabilidade saturado da camada de proteção 2. 84
Figura 5.21 - Posição da linha freática e vetores de velocidade de fluxo
considerando coeficiente de permeabilidade saturado na camada 2 igual a k =
$2.53 \times 10^{-3} \text{ cm/s.}$ 84
Figura 5.22 - Posição da linha freática e vetores de velocidade de fluxo

a e velores

considerando coeficiente de permeabilidade saturado na camada 2 igual a k =
$2.53 \times 10^{-4} \text{ .cm/s}$ 85
Figura 5.23- Perfil de saturação nas camadas de proteção com a variação do
coeficiente de permeabilidade saturado da camada de proteção 1. 85
Figura 5.24 - Posição da linha freática e vetores de velocidade de fluxo
considerando coeficiente de permeabilidade saturado na camada 1 igual a k =
$2.53 \times 10^{-3} \text{ cm/s}$ 86
Figura 5.25 - Posição da linha freática e vetores de velocidade de fluxo
considerando coeficiente de permeabilidade saturado na camada 1 igual a k =
$2.53 \times 10^{-4} \text{ cm/s}$ 86
Figura 5.26 Malha de elementos finitos da seção transversal da pilha de
lixiviação. 89
Figura 5.27 Distribuição dos vetores das velocidades de fluxo,
preponderantemente verticais 89
Figura 5.28 Distribuição das poropressões nas zonas não saturadas e saturadas 89
Figura 5.29 Distribuição dos teores de umidade volumétrico na pilha de
lixiviação 90
Figura 5.30 Distribuição das cargas totais90
Figura 5.31 Distribuição dos valores das tensões principais máximas na pilha de
lixiviação. 92
Figura 5.32 Convergência da solução numérica para valores do fator de redução
M. 93
Figura 5.33 Campo de deslocamentos para $M = 1,10$ a $M = 1,40$ 94
Figura 5.34 Campo de deslocamentos para $M = 1,45.a$ $M = 1.65$ com indicação
das superfícies plana e composta para $M = 1,60$ 95
Figura 5.35 Superfície de ruptura composta (FS = 1,634)96
Figura 5.36 Superfície de ruptura plana (FS = 1,645)96
Figura 5.37 Potencial superfície de ruptura composta - método de equilíbrio
limite. 97
Figura 5.38 Posição da potencial superfície de ruptura plana - método de
equilíbrio limite. 97
Figura 5.39 Função de redução do módulo de cisalhamento G. 100
Figura 5.40 Função da redução da razão de amortecimento ξ. 101

Figura 5.41 Sismicidade na região sul do Peru entre 1964 e 1996 (magnitudes M
> 5) – Instituto Geofísico do Peru 101
Figura 5.42 Registro do terremoto de Lima (1974) normalizado para aceleração
máxima de 0.30g. 102
Figura 5.43 Registro do terremoto de Moquega (2001) com aceleração máxima
de 0.30g. 102
Figura 5.44 Registro dos deslocamentos horizontais no topo da pilha 104
Figura 5.45 Registro das acelerações horizontais no topo da pilha. 104
Figura 5.46 Registro de deslocamentos horizontais no topo da pilha. 105
Figura 5.47 Registro das acelerações horizontais no topo da pilha. 105
Figura 5.48 Variação do fator de segurança no tempo ($F_{max} = 3,90, F_{min} = 1$). 107
Figura 5.49 Variação do fator de segurança com a aceleração média da massa
deslizante. 107
Figura 5.50 Variação da aceleração média da massa deslizante em função do
tempo. 108
Figura 5.51 - Variação do fator de segurança no tempo ($F_{max} = 3,50, F_{min} = 1,05$)
108
Figura 5.52 - Variação do fator de segurança com a aceleração média da massa
deslizante 109
Figura 5.53 Variação da aceleração média como uma função do tempo 109
Figura 5.54 - Variação do fator de segurança médio da massa deslizante no tempo
$(F_{max} = 3,20, F_{min} = 0,90).$ 110
Figura 5.55 Variação do fator de segurança com a aceleração média da massa
deslizante. 111
Figura 5.56 Variação do fator de segurança médio da massa deslizante no tempo
$(F_{max} = 3,05, F_{min} = 0,95).$ 111
Figura 5.57 Variação do fator de segurança com a aceleração média da massa
deslizante. 112
Figura 5.58 Convergência da solução numérica para variação do fator de redução
M 114
Figura 5.59 Campos de deslocamentos para $M = 1$ a $M = 1.25$, com indicação da
superfície plana para M = 1.20 115
Figura 5.60 - Convergência da solução numérica para variação do fator de redução

М.	116
Figura 5.61 Campos de deslocamentos para o fator de redução $M = 1$ a	M =
1,25, com indicação da superfície plana para $M = 1.20$.	117
Figura 5.62 Posição das superfícies de ruptura nas análise pré e pós - sismo	118

Lista de tabelas

Tabela 4.1 - Características dos MEL não rigorosos (de Campos, 1985).58
Tabela 4.2 - Características dos métodos de equilíbrio limite rigorosos (de
Campos, 1985) 59
Tabela 4.3 – Valores típicos do coeficiente sísmico kh66
Tabela 5.1Resumo das propriedades do minério71
Tabela 5.2Resumo das propriedades do material das camadas de proteção75
Tabela 5.3 Altura de saturação para diferentes espaçamentos entre drenos,
coeficientes de permeabilidade da camada 1 de proteção do revestimento e
vazões de aplicação da solução. 78
Tabela 5.4 Comparação da altura máxima de saturação (m) determinadas
analiticamente e numericamente. 79
Tabela 5.5. Características das 22 modelagens numéricas.80
Tabela 5.6 Altura máxima da zona de saturação considerado fluxo 2D não
saturado. 87
Tabela 5.7 Parâmetros do modelo de Van Genuchten (1980)87
Tabela 5.8 Valores dos parâmetros de resistência (condição saturada) e peso
específico natural das camadas de minério de cobre. 88
Tabela 5.9 Redução da resistência das camadas de minério na simulação do
colapso. 90
Tabela 5.10 Redução da resistência das camadas de minério na simulação do
colapso. 91
Tabela 5.11 Valores dos parâmetros para as análises de tensões elastoplásticas.
92
Tabela 5.12 Fatores de segurança para superfície composta97
Tabela 5.13 Fator de segurança para superfície plana.98
Tabela 5.14 Valores dos fatores de segurança estáticos98
Tabela 5.15 Fatores de segurança para superfície composta99
Tabela 5.16 Fatores de segurança para superfície plana99
Tabela 5.17 Parâmetros para análise dinâmica.100

Tabela 5.18 Comparação dos fatores de segurança dinâmicos avaliados	com os
registros dos terremotos de Lima (1974) e de Moquegua (2001)	112
Tabela 5.19 Redução do ângulo de resistência ao cisalhamento na simul-	ação do
colapso.	113
Tabela 5.20 Fator de segurança pós sismo para superfície composta	119
Tabela 5.21 Fator de segurança pós sismo para superfície plana	119
Tabela 5.22 Fator de segurança pós sismo para superfície composta.	119
Tabela 5.23Fator de segurança pós sismo para superfície plana.	119

Lista de Símbolos

θ	Teor de umidade volumétrico
θ_s	Teor de umidade volumétrico saturado
θ_r	Teor de umidade volumétrico residual
ψ	Sucção mátrica
k _s	Coeficiente de permeabilidade saturado
κ_{ω}	Coeficiente de permeabilidade não saturado
m _v	Coeficiente de compressibilidade volumétrica
a	Valor aproximado de entrada de ar
n	Parâmetro controla pendeiente do ponto de inflexão da função θ
m	Parâmetro que descreve o teor de umidade volumétrico residual
C(ψ)	Função de conexão
Cr	Constante que descreve ψ correspondente a θ_r
$k(\theta)_i$	Coeficiente de permeabilidade saturado para um θ específico
k _s /k _{sc}	Fator de igualdade
k _{sc}	Coeficiente de permeabilidade saturado calculado
Т	Tensão superficial da a água
β	Ângulo de contato
η	Viscosidade da água
γ_{ω}	Densidade da água
g	Constante de gravidade
S _p	Pendente da função de condutividade hidráulica não saturada
V_{w}	Volume da água
V	Volume total
Vi	Volume de poros por unidade de massa de um segmento
\mathbf{W}_{i}	Massa sólida por unidade de massa de um segmento

$ ho_p$	Densidade da partícula do solo
e	Ìndice de vazios
α	Constante da forma da partícula
R _i	Radio de uma partícula esférica equivalente à massa sólida W_i
r _i	Radio de poros de cada segmento
n _i	Número de partículas
S _c	Força capilar
S _a	Função de conexão
Sr	Grau de saturação
h _{co}	Elevação de capilaridade média
D ₁₀	Diâmetro da partícula correspondente ao 10% que passa
C _u	Coeficiente de uniformidade
W_L	Limite liquida (%)
V	Velocidade de Darcy
i	Gradiente de carga hidráulica
k	Coeficiente de permeabilidade
Н	Carga total
k _x , k _y	Coeficiente de permeabilidade na direção x e y
Q	Fluxo de contorno
t	Tempo
FS	Fator de segurança
S	Resistência ao cisalhamento
τ	Tensão cisalhante induzida sob o potencial superfície de ruptura
с, ф	Parâmetros de resistência
c´, ¢´	Parâmetros de resistência em termos de tensões efetivas
k _h , k _v	Coeficiente sismico vertical e horizontal

W	Peso da massa do solo
W _i	Peso da fatia de solo i
$k_h W$	Força de inércia
Ν	Força normal à base da fatia
S	Força tangente à base da fatia
A_1, A_2	Forças hidrostáticas
b	Largura da fatia
T ₁ , T ₂	Forças cisalhantes verticais interfatias
E ₁ , E ₂	Componente horizontal das forças entre as fatias
FS	Fator de segurança
D	Força aplicada na superficie do talude
1	Comprimento da base da fatia
σ_{n}	Tensão normal média na base da fatia de comprimento unitário
K_0	Coeficiente en repouso
μ_{a}	Pressão de poros de ar
$\mu_{\rm w}$	Pressão de poros de água
\mathbf{f}_{o}	Fator de correção
μ	Poro-pressão médio na base da fatia
ϕ^{b}	Ângulo que define o aumento na resistência cisalhante
S _m	Parcela mobilizada da resistência ao cisalhamento
MEF	Método dos elementos finitos